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Abstract. Using the shell model wave functions, we have studied quadrupole moments of medium-weight
and heavy hypernuclei, and obtained the shell model values of quadrupole moments of NΛ systems (N = p
and n). With the use of the first-order perturbation theory, we have also estimated the configuration mixing
effects on quadrupole moments of these NΛ hypernuclei. We show that the hyperon-induced configuration
mixing effects are small and the nucleon-induced configuration mixing effects are large in many cases.

PACS. 21.80.+a Hypernuclei

1 Introduction

Motoba et al. have investigated E2 transition moments
of light Λ-hypernuclei by using the cluster model [1,2].
They showed the several times enhancement of B(E2)
values in comparison with the simple shell model values,
and pointed out the importance of the clustering effects in
hypernuclei. Recently, we have calculated quadrupole mo-
ments of light Λ-hypernuclei on the basis ofN = Z double-
closed core, and estimated the configuration mixing effects
on these hypernuclear quadrupole moments [3]. To study
electromagnetic moments of hypernuclei will serve to un-
derstand the hypernuclear structure and to refine the hy-
pernuclear model.

In this paper, within the framework of shell model, on
the basis of N �= Z double-closed nuclear core, we calcu-
late quadrupole moments of medium-weight and heavy
hypernuclei with the NΛ configuration (N = p and n),
and estimate the configuration mixing effects on these
hypernuclear quadrupole moments by using the first-
order perturbation theory [4,5]. To investigate hypernu-
clear quadrupole moments will lead us to understand the
quadrupole deformation of hypernuclei and the effective
charges of hyperons as well as nucleons in hypernuclei.

In section 2, quadrupole moments of Λ-hypernuclei are
discussed on the basis of the perturbation theory. In sec-
tion 3, are presented the results of shell model calculations.
In section 4, we discuss quadrupole moments of some spe-
cial hypernuclei and effective charges of nucleons and hy-
perons in hypernuclei

In section 5, a summary is given. In appendix, are
shown the correction formulae of configuration mixing ef-
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fects on static moments of medium-weight and heavy NΛ
hypernuclei.

2 Static moments of Λ-hypernuclei

Previously, within the framework of shell model, we have
studied magnetic moments of Λ-hypernuclei and esti-
mated the configuration mixing effects on these hyper-
nuclei by using the first-order perturbation theory [6,7].
Recently, to investigate quadrupole moments of light Λ-
hypernuclei [3], we have used the same method as pre-
vious works of hypernuclear magnetic moments. In this
paper, we study quadrupole moments of medium-weight
and heavy Λ-hypernuclei with the use of the same method
as previous works [3,6,7].

Here, we review and summarize the first-order per-
turbation method to investigate static moments of Λ-
hypernuclei within the framework of the shell model. The
wave functions of Λ-hypernuclei may be written as

Ψ(J) = Ψ0 +
∑

i

γNi ΨNi +
∑

i

γΛi ΨΛi, (1)

if the admixture of the excited to the ground configuration
is very small (γNi � 1 and γΛi � 1). The zeroth-order
wave function Ψ0 is given by a nuclear wave function (ΨN)
and a Λ-hyperon wave function (ΨΛ); Ψ0 = [ΨN × ΨΛ]0.
The basic wave functions ΨNi and ΨΛi are constructed by
exciting a nucleon (N) and a hyperon (Λ), respectively;
ΨNi = [ΨN

′ × ΨΛ]i and ΨΛi = [ΨN × ΨΛ
′]i. The coefficients

γNi and γΛi are the mixing amplitudes, which may be
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evaluated by the perturbation theory. They are written as

γNi =
〈ΨNi|

∑
V |Ψ0〉

E0 − ENi
, (2)

γΛi =
〈ΨΛi|

∑
V |Ψ0〉

E0 − EΛ
, (3)

∑
V =

∑
VNN +

∑
VNΛ, (4)

where VNN and VNΛ denote the residual nucleon-nucleon
interaction and nucleon-hyperon interaction, respectively.
The nucleon-induced corrections, which are induced by the
nucleon-nucleon interaction (VNN), were extensively stud-
ied by Blin-Stoyle, Arima and Horie [4,5]. On the other
hand, the hyperon-induced corrections, which are induced
by the nucleon-hyperon interaction (VNΛ), are attempted
to estimate in this and the previous papers [3,6,7].

The hypernuclear spin (J) is obtained by coupling a
nuclear spin (JN) and a Λ-hyperon spin (JΛ); J̃ = J̃N+J̃Λ.
With the use of the wave function (1), we can calculate
hypernuclear moment

f (k) = f (k)
N + f (k)

Λ (N = p and n), (5)

where the symbol f (k) denotes the one-body operator of
rank k, such as the magnetic moment µ(k = 1) and the
quadrupole moment Q(k = 2). The result is written in the
form〈
f (k)(J)

〉
=

〈
f (k)(J)

〉
0
+ δN + δΛ,〈

f (k)(J)
〉
=

〈
Ψ0

∣∣f (k)
∣∣Ψ0

〉
J
+

∑
i

2γNi

〈
Ψ0

∣∣f (k)
∣∣ΨNi

〉
J

+
∑

i

2γΛi〈Ψ0

∣∣f (k)
∣∣ΨΛi〉J . (6)

Here, 〈f (k)(J)〉0 shows the zeroth-order value of hyper-
nuclear static moments, and δN and δΛ denote the first-
order corrections induced by nucleon (N) excitations and
hyperon (Λ) excitations, respectively.

After some Racah algebra [8], we have obtained the for-
mulae of configuration mixing effects on static moments of
NΛ hypernuclei. The results are summarized in appendix.

3 Shell model calculations

Within the framework of shell model, we have estimated
the first-order correction δN to quadrupole moments of
medium-weight and heavy hypernuclei with the simple NΛ
configurations (N = p and n). The correction δΛ turns out
to be zero, as far as we use the free charge of a Λ-hyperon
(eΛ = 0). The excited states (ΨN1, ΨN2, ΨN3, . . . ) are classi-
fied according to the configuration mixing theory of Arima
and Horie [5]. Employing the one-proton excitation mode
of Arima and Horie [5], we have obtained the correction
formulae with the use of the standard Racah algebra [8].
The correction δN is divided into two parts:

δN = δNN + δNΛ,

δN =
∑

i

δpi(NN) +
∑

i

δpi(NΛ) (i = 1, 2, 3, . . . ), (7)

where δNN and δNΛ denote the corrections induced by the
NN interactions (VNN) and the NΛ interactions (VNΛ), re-
spectively. The symbol δpi(NN) shows the correction of
the one-proton excitation mode induced by the NN in-
teraction (VNN), which was extensively studied in the nu-
clear moment analyses by Arima and Horie [5]. On the
other hand, δpi(NΛ) denotes the correction of the one-
proton excitation mode induced by the NΛ interactions
(VNΛ), which we attempt to estimate in the hypernuclear
moment analyses [3,6,7].

3.1 The pΛ systems with jp = lp ± 1/2 orbit

We use the following basic states:

Ψ0 = |jpjΛ〉J , (8)

ΨN1 = |jp′jΛ〉J , (9)

ΨN2 = a|jp′jΛ〉J + b|[[jpjn−1](J0 = 0)jn′](JN)jΛ〉J , (10)
ΨN3 = |[(jp′)−1jp

2(J0)](JN)jΛ〉J , (11)

ΨN4 = |[[(jπ−1jπ
′](J0)jp](JN)jΛ〉J , (12)

ΨN5 = α|[[(jπ−1jπ
′](J0)jp](JN)jΛ〉J

+ β|[[(jν−1jν
′](J0)jp](JN)jΛ〉J

+ {2h-4p states}. (13)

These states are schematically shown in fig. 1 and fig. 2.
The factors (a, b) and (α, β, γ, δ) in these wave functions
(ΨNi) are given by the isospin Clebsch-Gordan coefficients
as follows:

(a, b) =

(√
2Tc

2Tc + 1
,−

√
1

2Tc + 1

)
, (14)

(α, β, γ, δ) =

(√
Tc

2(Tc + 1)
,

√
Tc

2(Tc + 1)
,

−
√

1
2(Tc + 1)

,−
√

1
2(Tc + 1)

)
, (15)

where the quantum number Tc denotes the isospin of the
nuclear core. On the other hand, the symbol T0 shows the
isospin of valence particles. Hypernuclear excited states
(ΨNi) are obtained according to the Arima-Horie classifi-
cations scheme of the configuration mixing theory [5]. For
example, in the case of 50

Λ Sc, we get the wave functions
ΨN2 and ΨN5 by an application of the isospin lowering
operator (T−) to |50Λ Ca(gr. conf.)〉 and |50Λ Ca(ex. conf.)〉,
respectively. The total isospin of ΨN5 are obtained by the
core-particles coupling scheme: T = Tc × T0(hp). In the
numerical calculations, neglecting {2h-4p states}, we se-
lect only the one-proton excitation mode, because we are
interested in the first-order corrections to hypernuclear
quadrupole moments.
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Fig. 1. The shell model configuration of the ground states of
medium-weight and heavy hypernuclei. (a) pΛ systems with
jp = lp ± 1/2 orbit. (b) nΛ systems with jn = ln ± 1/2 orbit.

3.2 The nΛ systems with jn = ln ± 1/2 orbit.

Basic states are as follows:

Ψ0 = |jnjΛ〉J , (16)

ΨN1 = |[jπ−1[jπ ′jn](J0)](JN)jΛ〉J , (17)

ΨN2 = α̃|[(jp′)−1[jpjn](J0, T0 = 1)(JN)jΛ〉J
+δ|[(jn′)−1j2n(J0, T0 = 1)](JN)jΛ〉J
+ {4p-2h states}, (18)

ΨN3 = |[(jp′)−1[jpjn](J0, T0 = 0)(JN)jΛ〉J , (19)

ΨN4 = α|[jπ−1[jπ ′jn](J0, T0 = 1)](JN)jΛ〉J
+ β|[jπ−1[jpjν ′](J0, T0 = 1)](JN)jΛ〉J
+ δ|[jν−1[jnjν ′](J0, T0 = 1)](JN)jΛ〉J
+ {4p-2h states}, (20)

ΨN5 =
1√
2
|[jπ−1[jπ ′jn](J0, T0 = 0)](JN)jΛ〉J

+
1√
2
|[jπ−1[jpjν ′](J0, T0 = 0)](JN)jΛ〉J . (21)

These wave functions are schematically presented in fig. 1
and fig. 3. The factors (α, β, γ, δ) in these states are given
by eq. (15) (α̃ =

√
2α). In the case of 50

Λ Ca, for example,
we obtain the wave functions ΨN2 and ΨN4 by applying the
isospin shift operator (T−) to |50Λ K(gr. conf.)〉 and |50Λ K(ex.
conf.)〉, respectively. The total isospin of ΨN2 and ΨN4 are
obtained by the equation: T = Tc × T0(pp). In the nu-
merical studies, as for the pΛ systems, we choose only the
one-proton excitation mode, because we try to estimate
the first-order corrections to hypernuclear quadrupole mo-
ments.

Fig. 2. The shell model configuration of the excited states of
medium-weight and heavy pΛ hypernuclei with jp = lp ± 1/2
orbit.

Hypernuclear wave functions with good isospin, such
as ΨN2, ΨN5 (in fig. 2), ΨN2 and ΨN4 (in fig. 3) were used
to investigate magnetic moments of medium-weight and
heavy hypernuclei [7]. On the other hand, nuclear wave
functions with good isospin were proposed for a systematic
study of core polarization phenomena of medium-weight
and heavy nuclei, such as N = 28 isotones [9].

The correction formulae for static moments of NΛ
hypernuclei are presented in appendix, where the sym-
bol f (k)

p denotes the one-body operator of rank k,
such as the quadrupole moment operator Qp =√
16π/5 epr2pY20(θp, φp), and the symbol δ̃pi shows the re-

duced matrix element of the correction

δpi =
(
J k J
−J 0 J

)
δ̃pi (i = 1, 2, 3, . . . ). (22)

In the shell model analyses, assuming the energy de-
nominator −∆Epi = E0 − Epi is constant, we summed
up the intermediate states and described the correc-
tions δ̃pi in terms of the average energies Ēpi(NN, jπjπ ′),
Ēpi(NΛ, jπjπ ′) and Ẽpi(NΛ, jπjπ ′), which are defined in
appendix.



484 The European Physical Journal A

Fig. 3. The shell model configuration of the excited states of
medium-weight and heavy nΛ hypernuclei with jn = ln ± 1/2
orbit.

3.3 Numerical results

The zeroth-order value of quadrupole moments of NΛ hy-
pernuclei jN = lN ± 1/2 is given by the equation [3]

〈Q(J)〉0 =
(
J 2 J
−J 0 J

)
〈jNjΛJ‖QN‖jNjΛJ〉,

〈Q(J)〉0 = α(J)〈QN(jN)〉, (23)

where 〈QN(jN)〉 shows the single-particle value of the nu-
clear quadrupole moment and the coefficient α(J) is given
as follows:

α(J) =



(2jN − 2)(2jN + 3)
2jN(2jN + 1)

, J = jN − 1/2,
1, J = jN + 1/2.

(24)

Numerical values of pΛ and nΛ hypernuclear quadrupole
moments are listed in table 1 and table 2, respectively.

Effective values are calculated by using observed values
of quadrupole moments of nuclei with {core + N} config-
urations (N = p and n), such as 209Bi and 73Ge [10]. On
the other hand, single-particle values are estimated simply
assuming the uniform charge distribution with a nuclear
radius R = r0A1/3 [3].

It is interesting to discuss effective quadrupole mo-
ments of heavier NΛ hypernuclei, such as 210

Λ Bi and 74
Λ Ge.

The discussions on these moments are given in the next
section.

Here we show and discuss the configuration mixing ef-
fects on quadrupole moments of medium-weight and heavy
NΛ hypernuclei. The calculations of these heavier hyper-
nuclei are rather tedious, and we select the simple cases;
50
Λ Sc and

50
Λ Ca, the pΛ system and the nΛ system, re-

spectively. With the use of the correction formulae in ap-
pendix, we can estimate the configuration mixing effects
on quadrupole moments of these hypernuclei.

The active orbits in the calculations are as follows:

[50Λ Sc]Ψp2 : jp = 1f7/2;

jp
′ =1f5/2,2p3/2,1h11/2,1h9/2,2f7/2,2f5/2,3p3/2.

Ψp3 : jp = 1f7/2; jp′ = 1p3/2.

Ψp5 : jπ = 1d5/2;

jπ
′ = 1g9/2, 1g7/2, 2d5/2, 2d3/2, 3s1/2.

jπ = 1d3/2; jπ ′ = 1g7/2, 2d5/2, 2d3/2, 3s1/2.

jπ = 2s1/2; jπ ′ = 2d5/2, 2d3/2.

jπ = 1p3/2; jπ ′ = 1f5/2, 2p3/2, 2p1/2.

jπ = 1p1/2; jπ ′ = 1f5/2, 2p3/2.

[50Λ Ca]Ψp1 : jπ = 1p3/2; jπ ′ = 1f7/2.

Ψp2 : jp = 2p3/2; jp′ = 1p3/2, 1p1/2.

Ψp3 : jp = 2p3/2; jp′ = 1p3/2, 1p1/2.

Ψp4 : jπ = 1d5/2;

jπ
′ = 1g9/2, 1g7/2, 2d5/2, 2d3/2, 3s1/2.

jπ = 1d3/2; jπ ′ = 1g7/2, 2d5/2, 2d3/2, 3s1/2.

jπ = 2s1/2; jπ ′ = 2d5/2, 2d3/2.

jπ = 1p3/2; jπ ′ = 1f5/2, 2p1/2.

jπ = 1p1/2; jπ ′ = 1f5/2.

Ψp5 : jπ = 1d5/2;

jπ
′ = 1g9/2, 1g7/2, 2d5/2, 2d3/2, 3s1/2.

jπ = 1d3/2; jπ ′ = 1g7/2, 2d5/2, 2d3/2, 3s1/2.

jπ = 2s1/2; jπ ′ = 2d5/2, 2d3/2.

jπ = 1p3/2; jπ ′ = 1f5/2, 2p1/2.

jπ = 1p1/2; jπ ′ = 1f5/2.

All configurations (Ψp1–Ψp5) are not always used to evalu-
ate the first-order corrections to hypernuclear quadrupole
moments. A Λ-hyperon is assumed to be in the ground
configuration; jΛ = 1s1/2. In tables 3 and 4, the numeri-
cal results of configuration mixing effects are given in unit
of the inverse of the harmonic oscillator frequency 1/νN
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Table 1. Quadrupole moments of medium-weight and heavy pΛ hypernuclei with jp = lp ± 1/2 orbit (in efm2).

hypernuclei Configuration Jπ Effective(a) Single particle(b)

38
Λ Cl 1d3/2 (p)× 1s1/2(Λ) 1+ −3.246 −1.918

2+ −6.493 −3.837
50
Λ Sc 1f7/2 (p)× 1s1/2(Λ) 3− ∗ −6.886

4− ∗ −7.712
90
Λ Y 1g9/2 (p)× 1s1/2(Λ) 4+ ∗ −11.690

5+ ∗ −12.525
92
Λ Nb 1g9/2 (p)× 1s1/2(Λ) 4+ ∗ −11.865

5+ ∗ −12.712
134
Λ Sb 1h11/2 (p)× 1s1/2(Λ) 5− ∗ −16.529

6− ∗ −17.316
210
Λ Bi 1i13/2 (p)× 1s1/2(Λ) 6+ ∗ −23.540

7+ ∗ −24.342
1h9/2 (p)× 1s1/2(Λ) 4− −42.9 −20.654

5− −46.0 −22.129

(a) Effective Values are calculated by observed values of quadrupole moments of nuclei with the {core+p} configuration.
(b) Single-particle values are calculated by assuming the uniform charge distribution with a nuclear radius R = r0A

1/3.

Table 2. Quadrupole moments of medium-weight and heavy nΛ hypernuclei with jn = ln ± 1/2 orbit (in efm2).

Hypernuclei Configuration Jπ Effective(a) Single particle(b)

50
Λ Ca 2p3/2(n)× 1s1/2(Λ) 1− ∗ 0.0

2− ∗ 0.0
62
Λ Ni 1f5/2(n)× 1s1/2(Λ) 2− −6.4 0.0

3− −8.0 0.0
74
Λ Ge 1g9/2(n)× 1s1/2(Λ) 4+ −16.1 0.0

5+ −17.3 0.0
90
Λ Sr 2d5/2(n)× 1s1/2(Λ) 2+ ∗ 0.0

3+ ∗ 0.0
92
Λ Zr 2d5/2(n)× 1s1/2(Λ) 2+ ∗ 0.0

3+ ∗ 0.0
134
Λ Sn 2f7/2(n)× 1s1/2(Λ) 3− ∗ 0.0

4− ∗ 0.0
210
Λ Pb 2g9/2(n)× 1s1/2(Λ) 4+ ∗ 0.0

5+ ∗ 0.0
(a) Effective values are calculated by observed values of quadrupole moments of nuclei with the core {core+n} configuration.
(b) Same comments as for table 1

and 1/νΛ. The factors ε̄pi(NN, jπjπ ′) and ε̄pi(NΛ, jπjπ ′)
in these tables are defined as follows:

ε̄pi(NN, jπjπ ′) =
Ēpi(NN, jπjπ ′)

∆Epi
, (25)

ε̄pi(NΛ, jπjπ ′) =
Ēpi(NΛ, jπjπ ′)

∆Epi
, (26)

where the averaged energies Ēpi(NN, jπjπ ′) and
Ēpi(NΛ, jπjπ ′) are estimated, assuming the energy

denominator ∆Epi to be constant. the factor ε̃pi and the
average energy Ẽpi(NΛ, jπjπ ′) are defined in the same
way:

ε̃pi(NΛ, jπjπ ′) =
Ẽpi(NΛ, jπjπ ′)

∆Epi
. (27)

In the numerical calculations we use free charges of nucle-
ons and a Λ-hyperon (ep = 1, en = eΛ = 0).

From tables 3 and 4, we see that the number of correc-
tion terms δNΛ is much fewer than that of correction terms
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Table 3. The first-order corrections to quadrupole moments of medium-weight and heavy pΛ hypernuclei [A = 50 systems] (in
efm2). The corrections δNi(NN) and δNi(NΛ) are given in units of 1/νN and 1/νΛ, respectively. See text for details.

Hypernuclei Jπ δNi(NN) δNi(NΛ)
50
Λ Sc 3− −3.659 ε̄p3(NN, 1f7/21p3/2) −0.659 γN2(1f5/2)

−2.250 ε̄p5(NN, 1d5/21g9/2) +2.244 γN2(2f7/2)

−0.636 ε̄p5(NN, 1d5/21g7/2) +0.311 γN2(2f5/2)

−0.734 ε̄p5(NN, 1d5/22d5/2)

−0.367 ε̄p5(NN, 1d5/22d3/2)

−0.519 ε̄p5(NN, 1d5/23s1/2)

+1.909 ε̄p5(NN, 1d3/21g7/2)

−0.367 ε̄p5(NN, 1d3/22d5/2)

−0.561 ε̄p5(NN, 1d3/22d3/2)

−0.424 ε̄p5(NN, 1d3/23s1/2)

−2.173 ε̄p5(NN, 2s1/22d5/2)

−1.775 ε̄p5(NN, 2s1/22d3/2)

+0.581 ε̄p5(NN, 1p3/21f5/2)

+0.474 ε̄p5(NN, 1p3/22p3/2)

+0.474 ε̄p5(NN, 1p3/22p1/2)

−1.086 ε̄p5(NN, 1p1/21f5/2)

+0.474 ε̄p5(NN, 1p1/22p3/2)
50
Λ Sc 4− −4.098 ε̄p3(NN, 1f7/21p3/2) −0.479 γN2(1h9/2)

−2.520 ε̄p5(NN, 1d5/21g9/2) +2.514 γN2(2f7/2)

−0.712 ε̄p5(NN, 1d5/21g7/2)

−0.823 ε̄p5(NN, 1d5/22d5/2)

−0.411 ε̄p5(NN, 1d5/22d3/2)

−0.582 ε̄p5(NN, 1d5/23s1/2)

+2.138 ε̄p5(NN, 1d3/21g7/2)

−0.411 ε̄p5(NN, 1d3/22d5/2)

+0.628 ε̄p5(NN, 1d3/22d3/2)

−0.475 ε̄p5(NN, 1d3/23s1/2)

−2.434 ε̄p5(NN, 2s1/22d5/2)

−1.988 ε̄p5(NN, 2s1/22d3/2)

+0.650 ε̄p5(NN, 1p3/21f5/2)

+0.531 ε̄p5(NN, 1p3/22p3/2)

+0.531 ε̄p5(NN, 1p3/22p1/2)

−1.217 ε̄p5(NN, 1p1/21f5/2)

+0.531 ε̄p5(NN, 1p1/22p3/2)

δNN. Therefore, hyperon-induced configuration mixing ef-
fects (

∑
δNi(NΛ)) turn out to be one or two orders of mag-

nitude smaller than nucleon-induced configuration mix-
ing effects (

∑
δNi(NN)), because NΛ interactions are one-

order of magnitude smaller than NN interactions. More
detailed numerical calculations of these corrections will
be the next-step problem.

The perturbation theory, which we use in this and pre-
vious papers [3,6,7], turns out to work well in hypernu-
clear moments analyses, because NΛ interactions are one-
order of magnitude smaller than NN interactions. Thus,
we may justify the perturbation method in hypernuclear
moment studies.

4 Discussions

In this section, we give discussions on quadrupole mo-
ments of special hypernuclei, whose effective values are
available. We also discuss effective charges of nucleons and
hyperons in hypernuclei and the diagram of hypernuclear
quadrupole moments.

4.1 Quadrupole moments of 38ΛCl

The hypernucleus 38
Λ Cl is not heavy, but we simply as-

sume the doubled-closed core 36
16S20, which is the same

type N �= Z core as 48
20Ca28 and

208
82 Pb126 used in this pa-

per. Thus, we studied quadrupole moments of 38
Λ Cl in this
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Table 4. The first-order corrections to quadrupole moments of medium-weight and heavy nΛ hypernuclei [A = 50 systems] (in
efm2). The corrections δNi(NN) and δNi(NΛ) are given in units of 1/νN and 1/νΛ, respectively. See text for details.

Hypernuclei Jπ δNi(NN) δNi(NΛ)
50
Λ Ca 1− +1.897 ε̄p1(NN, 1p3/21f7/2) −0.422 ε̃p2(NΛ, 2p3/21p3/2)

+0.517 ε̄p2(NN, 2p3/21p3/2) +0.422 ε̃p2(NΛ, 2p3/21p1/2)

+0.517 ε̄p2(NN, 2p3/21p1/2) +0.516 ε̃p3(NΛ, 2p3/21p3/2)

+0.632 ε̄p3(NN, 2p3/21p3/2) −0.516 ε̃p3(NΛ, 2p3/21p1/2)

+0.632 ε̄p3(NN, 2p3/21p1/2)

−1.227 ε̄p4(NN, 1d5/21g9/2)

−0.347 ε̄p4(NN, 1d5/21g7/2)

−0.400 ε̄p4(NN, 1d5/22d5/2)

−0.200 ε̄p4(NN, 1d5/22d3/2)

−0.283 ε̄p4(NN, 1d5/23s1/2)

+1.041 ε̄p4(NN, 1d3/21g7/2)

−0.200 ε̄p4(NN, 1d3/22d5/2)

+0.306 ε̄p4(NN, 1d3/22d3/2)

−0.231 ε̄p4(NN, 1d3/23s1/2)

−1.185 ε̄p4(NN, 2s1/22d5/2)

−0.968 ε̄p4(NN, 2s1/22d3/2)

+0.316 ε̄p4(NN, 1p3/21f5/2)

+0.258 ε̄p4(NN, 1p3/22p1/2)

−0.592 ε̄p4(NN, 1p1/21f5/2)

−1.500 ε̄p5(NN, 1d5/21g9/2)

−0.424 ε̄p5(NN, 1d5/21g7/2)

−0.489 ε̄p5(NN, 1d5/22d5/2)

−0.244 ε̄p5(NN, 1d5/22d3/2)

−0.346 ε̄p5(NN, 1d5/23s1/2)

+1.272 ε̄p5(NN, 1d3/21g7/2)

−0.244 ε̄p5(NN, 1d3/22d5/2)

+0.374 ε̄p5(NN, 1d3/22d3/2)

−0.282 ε̄p5(NN, 1d3/23s1/2)

−1.449 ε̄p5(NN, 2s1/22d5/2)

−1.183 ε̄p5(NN, 2s1/22d3/2)

+0.387 ε̄p5(NN, 1p3/21f5/2)

+0.316 ε̄p5(NN, 1p3/22p1/2)

−0.724 ε̄p5(NN, 1p1/21f5/2)
50
Λ Ca 2− +3.794 ε̄p1(NN, 1p3/21f7/2) +0.553 ε̃p2(NΛ, 2p3/21p3/2)

+1.034 ε̄p2(NN, 2p3/21p3/2) −0.553 ε̃p2(NΛ, 2p3/21p1/2)

+1.034 ε̄p2(NN, 2p3/21p1/2) −0.676 ε̃p3(NΛ, 2p3/21p3/2)

+1.264 ε̄p3(NN, 2p3/21p3/2) +0.676 ε̃p3(NΛ, 2p3/21p1/2)

+1.264 ε̄p3(NN, 2p3/21p1/2)

−2.454 ε̄p4(NN, 1d5/21g9/2)

−0.694 ε̄p4(NN, 1d5/21g7/2)

−0.801 ε̄p4(NN, 1d5/22d5/2)

−0.400 ε̄p4(NN, 1d5/22d3/2)

−0.566 ε̄p4(NN, 1d5/23s1/2)

+2.082 ε̄p4(NN, 1d3/21g7/2)

−0.400 ε̄p4(NN, 1d3/22d5/2)

+0.612 ε̄p4(NN, 1d3/22d3/2)

−0.462 ε̄p4(NN, 1d3/23s1/2)
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Table 4. continued

Hypernuclei Jπ δNi(NN) δNi(NΛ)

−2.371 ε̄p4(NN, 2s1/22d5/2)

−1.936 ε̄p4(NN, 2s1/22d3/2)

+0.633 ε̄p4(NN, 1p3/21f5/2)

+0.517 ε̄p4(NN, 1p3/22p1/2)

−1.185 ε̄p4(NN, 1p1/21f5/2)

−3.000 ε̄p5(NN, 1d5/21g9/2)

−0.848 ε̄p5(NN, 1d5/21g7/2)

−0.979 ε̄p5(NN, 1d5/22d5/2)

−0.489 ε̄p5(NN, 1d5/22d3/2)

−0.692 ε̄p5(NN, 1d5/23s1/2)

+2.545 ε̄p5(NN, 1d3/21g7/2)

−0.489 ε̄p5(NN, 1d3/22d5/2)

+0.748 ε̄p5(NN, 1d3/22d3/2)

−0.565 ε̄p5(NN, 1d3/23s1/2)

−2.898 ε̄p5(NN, 2s1/22d5/2)

−2.366 ε̄p5(NN, 2s1/22d3/2)

+0.774 ε̄p5(NN, 1p3/21f5/2)

+0.632 ε̄p5(NN, 1p3/22p1/2)

−1.499 ε̄p5(NN, 1p1/21f5/2)

paper. The magnetic moment and quadrupole moment of
37Cl were investigated by Noya et al. [5], and the exper-
imental data [10] were nicely reproduced by the simple
shell model. We may justify the simple shell model config-
uration [1d3/2(p)× 1s1/2(Λ)] for the ground state of 38

Λ Cl.
The effective quadrupole moments of 1+ and 2+ states of
38
Λ Cl are calculated to be−3.246 (efm2) and−6.493 (efm2),
respectively.

4.2 Quadrupole moments of 210Λ Bi

The hypernucleus 210
Λ Bi is a typical example of heavy

pΛ systems, whose effective moments are available. The
magnetic moment and quadrupole moment of 209Bi
(9/2−, g.s.) were extensively studied by Noya et al. [5]
with the use of the shell model. The magnetic moment was
shown to be not satisfactorily reproduced by the configu-
ration mixing theory. On the other hand, the quadrupole
moment was shown to be nicely reproduced by the stan-
dard shell model calculation. By using the experimen-
tal data of 209Bi (9/2−,−46.0 efm2) [10], quadrupole mo-
ments of 4− and 5− states of 210

Λ Bi are predicted to be
−42.9 (efm2) and −46.0 (efm2), respectively. These values
are several times enhanced in comparison with the single-
particle values of the shell model (table 1).

4.3 Quadrupole moments of 62ΛNi

As is well known, Ni-isotopes have complex energy spec-
tra, and valence neutrons have large effective charges [10].

For introducing effective quadrupole moments of heav-
ier nΛ hypernuclei, we simply assumed the double-closed
core 60

28Ni32 and calculated quadrupole moments of
62
Λ Ni

in this paper. The quadrupole moment of the 5/2− state
(0.067MeV) of 61Ni was observed to be −8.0 (efm2) [10].
The effective quadrupole moments of the 2− and 3− state
of 62

Λ Ni are calculated to be −6.4 (efm2) and −8.0 (efm2),
respectively, which are compared to the single-particle
value 0.0 (efm2) (table 2).

4.4 Quadrupole moments of 74ΛGe

Ge-isotopes also have complex energy spectra [10]. As for
the previous example (62Λ Ni), for the sake of introducing
effective quadrupole moments of heavier nΛ hypernuclei,
we simply assumed the double-closed core 72

32Ge40, and cal-
culated quadrupole moments of 74

Λ Ge in this paper. The
magnetic moment and quadrupole moment of 73Ge were
suited by Noya et al. [5], and the experimental data [10]
were well reproduced by the simple shell model calcula-
tion.

The quadrupole moment of the 9/2+ state (g.s.) of
73Ge was observed to be −17.3 (efm2) [10]. The effective
quadrupole moments of 4+ and 5+ states of 74

Λ Ge are cal-
culated to be −16.1 (efm2) and −17.3 (efm2), respectively.
The experimental data of these moments are much desired
to test the hypernuclei shell model.
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4.5 Effective charges of nucleons and hyperons in
hypernuclei

As is well known, neutrons and protons have effective
charges (δen and δep) in nuclei, which shows the collective
motions of nuclei [4,5]. Generally speaking, neutron’s ef-
fective charges are rather larger than proton’s (δen � δep).
From the shell model point of view, this fact is ascribed to
the strong property of neutron-proton (np) interactions.
Indeed, the number of correction terms in 50

Λ Ca are about
twice larger than that of correction terms in 50

Λ Sc (tables 3
and 4). As NN interactions are one-order of magnitude
larger than NΛ interactions, we may expect larger effec-
tive charges of nucleons and smaller effective charges of
hyperons in Λ-hypernuclei; δen � δep � δeΛ.

4.6 The quadrupole moment diagram of hypernuclei

The nuclear quadrupole moment diagram, where the ra-
tios (Qexp/|Qsp|) are plotted against the mass number
(A), is frequently used to show the deformation and the
collective motion of nuclei [4,5]. In the same way, we
may expect the hypernuclear quadrupole moment dia-
gram, where the values (Qexp/|Qsp|) are plotted against
the mass number (A). This diagram will lead us to in-
vestigate the deformation and the collective motion of hy-
pernuclei. We desire the experimental observation and the
diagram of hypernuclear quadrupole moments.

5 Summary

Finally, we summarize our work as follows. In this paper,
we studied the quadrupole moments of medium-weight
and heavy NΛ hypernuclei within the framework of the
shell model. The quadrupole moments of these hypernu-
clei (Q) are determined mainly by those of nuclei (QN),
as far as the effective charge of the Λ-hyperon (eΛ) is
small. We also estimated the configuration mixing effects
on these hypernuclear quadrupole moments by using the
perturbation theory. The hyperon-induced configuration
mixing effects presented in tables 3 and 4 turn out to be
one or two orders of magnitude smaller than the nucleon-
induced configuration mixing effects, because nucleon-
hyperon (NΛ) interactions are one-order of magnitude
smaller than nucleon-nucleon (NN) interactions. There-
fore, the effective values of medium-weight and heavy NΛ
hypernuclear quadrupole moments listed in tables 1 and 2
are expected to be very close to experimental moments.
The experimental observation of hypernuclear quadrupole
moments is much desired to test hypernuclear models and
theories.

We would like to thank Ms. H. Joga for typing of this paper.

Appendix A.

Using the basic states in the text (Ψ0, ΨN1, ΨN2, ΨN3,
ΨN4, and ΨN5), we obtained the correction formulae of

configuration mixing effects on static moments of NΛ sys-
tems. In this appendix, we present the correction formulae,
which we used in the numerical calculations of quadrupole
moments. The symbol f (k)

p denotes the one-body opera-
tor of rank k, such as the quadrupole moment Q(k)

p (k = 2)
and the symbol δ̃pi shows the reduced matrix element of
the correction;

δpi =
(
J k J
−J 0 J

)
δ̃pi (i = 1, 2, 3, 4, 5).

Appendix A.1. The pΛ systems with jp = lp ± 1/2
orbit

1) Correction induced by ΨN1 (NΛ interaction).

δ̃p1(NΛ) = 2
∑
jp′

〈Ψ0‖f (k)
p ‖ΨN1(jp′)〉J γN1(jp′),

= 2
∑
jp′
(−)J+k+jp+jΛ(2J + 1)

{
J J k
jp jp

′ jΛ

}

×〈jp‖f (k)
p ‖jp′〉γN1(jp′). (A.1)

2) Correction induced by ΨN2 (NΛ interaction).

δ̃p2(NΛ) = 2
∑
jp′

〈Ψ0‖f (k)
p ‖ΨN2(jp′)〉J γN2(jp′),

= 2a2
∑
jp′
(−)J+k+jp+jΛ+1(2J+1)

{
J J k
jp jp

′ jΛ

}

×〈jp‖f (k)
p ‖jp′〉γN2(jp′). (A.2)

3) Correction induced by ΨN3 (NN interaction).

δ̃p3(NN) = − 2
∆EN3

∑
jp′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp3〉J

×〈Ψp3|VNN|Ψ0〉J ,
= 2

∑
jp′
(−)J+k+jp

′+jΛ+1(2J + 1)
{
J J k
jp jp jΛ

}

×〈jp‖f (k)
p ‖jp′〉 Ēp3(NN, jpjp′)

∆EN3
, (A.3)

where

Ēp3(NN, jpjp′) =
∑
J0

(2J0 + 1)
{
jp jp J0

jp
′ jp k

}

×〈j2p|VNN|jp′jp〉J0 (J0 = 0, even). (A.4)
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4) Correction induced by ΨN3 (NΛ interaction).

δ̃p3(NN) = − 2
∆EN3

∑
jp′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp3〉J

×〈Ψp3|VNΛ|Ψ0〉J × 1 + (−)J0

2
,

=
∑
jp′
(−)J+k+jp+jp

′
(2J + 1)

{
J J k
jΛ jΛ jp

}

×〈jp‖f (k)
p ‖jp′〉 Ēp3(NΛ, jpjp′)

∆EN3

+
∑
jp′
(−)J+k+jp+jΛ(2J + 1)

{
J J k
jp jp

′ jΛ

}

×〈jp‖f (k)
p ‖jp′〉 〈jpjΛ|VNΛ|jp′jΛ〉J

∆EN3
, (A.5)

where

Ēp3(NΛ, jpjp′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jp jΛ J

′
jΛ jp

′ k

}

×〈jpjΛ|VNΛ|jp′jΛ〉J ′ . (A.6)

5) Correction induced by ΨN4 (NN interaction).

δ̃p4(NN) = − 2
∆EN4

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp4〉J

×〈Ψp4|VNN|Ψ0〉J ,
= 2

∑
jπjπ

′
(−)J+k+jπ

′+jΛ(2J + 1)
{
J J k
jp jp jΛ

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp4(NN, jπjπ ′)

∆EN4
, (A.7)

where

Ēp4(NN, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jp J ′
jp jπ k

}

×〈jπ ′jp|VNN|jπjp〉J ′ . (A.8)

6) Correction induced by ΨN4 (NΛ interaction).

δ̃p4(NΛ) = − 2
∆EN4

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp4〉J

×〈Ψp4|VNΛ|Ψ0〉J ,
= 2

∑
jπjπ

′
(−)J+k+jp+jπ

′
(2J + 1)

{
J J k
jΛ jΛ jp

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp4(NΛ, jπjπ ′)

∆EN4
, (A.9)

where

Ēp4(NΛ, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jΛ J ′
jΛ jπ k

}

×〈jπ ′jΛ|VNΛ|jπjΛ〉J ′ . (A.10)

7) Correction induced by ΨN5 (NN interaction).

δ̃p5(NN) = − 2
∆EN5

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp5〉J

×〈Ψp5|VNN|Ψ0〉J ,
= 2α2

∑
jπjπ

′
(−)J+k+jπ

′+jΛ(2J + 1)
{
J J k
jp jp jΛ

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp5(NN, jπjπ ′)

∆EN5
, (A.11)

where

Ēp5(NN, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jp J ′
jp jπ k

}

×〈jπ ′jp|VNN|jπjp〉J ′ . (A.12)

8) Correction induced by ΨN5 (NΛ interaction).

δ̃p5(NΛ) = − 2
∆EN5

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp5〉J

×〈Ψp5|VNΛ|Ψ0〉J ,
= 2α2

∑
jπjπ

′
(−)J+k+jp+jπ

′
(2J + 1)

{
J J k
jΛ jΛ jp

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp5(NΛ, jπjπ ′)

∆EN5
, (A.13)

where

Ēp5(NΛ, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jΛ J ′
jΛ jπ k

}

×〈jπ ′jΛ|VNΛ|jπjΛ〉J ′ . (A.14)

Appendix A.2. The nΛ systems with jn = ln ± 1/2
orbit

1) Correction induced by ΨN1 (NN interaction).

δ̃p1(NN) = − 2
∆EN1

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp1〉J

×〈Ψp1|VNN|Ψ0〉J ,
= 2

∑
jπjπ

′
(−)J+k+jπ

′+jΛ(2J + 1)
{
J J k
jn jn jΛ

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp1(NN, jπjπ ′)

∆EN1
, (A.15)

where

Ēp1(NN, jπjπ ′) =
∑
J0

(−)J0(2J0 + 1)
{
jπ

′ jn J0

jn jπ k

}

×〈jπ ′jn|VNN|jπjn〉J0 . (A.16)
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2) Correction induced by ΨN1 (NΛ interaction).

δ̃p1(NΛ) = − 2
∆EN1

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp1〉J

×〈Ψp1|VNΛ|Ψ0〉J ,
= 2

∑
jπjπ

′
(−)J+k+jn+jπ

′
(2J + 1)

{
J J k
jΛ jΛ jn

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp1(NΛ, jπjπ ′)

∆EN1
, (A.17)

where

Ēp1(NΛ, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jΛ J ′
JΛ jπ k

}

×〈jπ ′jΛ|VNΛ|jπjΛ〉J ′ . (A.18)

3) Correction induced by ΨN2 (NN interaction).

δ̃p2(NN) = − 2
∆EN2

∑
jp′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp2〉J

×〈Ψp2|VNN|Ψ0〉J ,
= 2α̃2

∑
jp′
(−)J+k+jp

′+jΛ(2J + 1)
{
J J k
jn jn jΛ

}

×〈jp‖f (k)
p ‖jp′〉 Ēp2(NN, jpjp′)

∆EN2
, (A.19)

where

Ēp2(NN, jp jp′)=
∑
J0

(−)J0(2J0 + 1)
{
jp

′ jn J0

jn jp k

}

×〈jpjn|VNN|jp′jn〉J0 (J0=0, even). (A.20)

4) Correction induced by ΨN2 (NΛ interaction).

δ̃p2(NΛ) = − 2
∆EN2

∑
jp′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp2〉J

×〈Ψp2|VNΛ|Ψ0〉J 1 + (−)
J0

2
,

= α̃2
∑
jp′
(−)J+k+jp

′+jn(2J + 1)
{
J J k
jΛ jΛ jn

}

×〈jp‖f (k)
p ‖jp′〉 Ēp2(NΛ, jpjp′)

∆EN2

+ α̃2
∑
jp′
(−)J+k+jp+jΛ〈jp‖f (k)

p ‖jp′〉

× Ẽp2(NΛ, jpjp′)
∆EN2

, (A.21)

where

Ēp2(NΛ, jpjp′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jp jΛ J

′
jΛ jp

′ k

}

×〈jpjΛ|VNΛ|jp′jΛ〉J ′ , (A.22)

and

Ẽp2(NΛ, jpjp′) =
∑
J ′
(2J ′ + 1)

{
jp

′ jΛ J ′
J k jn

}

×〈jpjΛ|VNΛ|jp′jΛ〉J ′ . (A.23)

5) Correction induced by ΨN3 (NN interaction).

δ̃p3(NN) = − 2
∆EN3

∑
jp′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp3〉J

×〈Ψp3|VNN|Ψ0〉J ,
= 2

∑
jp′
(−)J+k+jp

′+jΛ(2J + 1)
{
J J k
jn jn jΛ

}

×〈jp‖f (k)
p ‖jp′〉 Ēp3(NN, jpjp′)

∆EN3
, (A.24)

where

Ēp3(NN, jp jp′ ) =
∑
J0

(−)J0(2J0 + 1)
{
jp

′ jn J0

jn jp k

}

×〈jpjn|VNN|jp′jn〉J0 (J0=odd). (A.25)

6) Correction induced by ΨN3 (NΛ interaction).

δ̃p3(NΛ) = − 2
∆EN3

∑
jp′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp3〉J

×〈ΨN3|VNΛ|Ψ0〉J × 1− (−)J0

2
,

=
∑
jp′
(−)J+k+jp

′+jn(2J + 1)
{
J J k
jΛ jΛ jn

}

×〈jp‖f (k)
p ‖jp′〉 Ēp3(NΛ, jpjp′)

∆EN3

−
∑
jp′
(−)J+k+jp+jΛ〈jp‖f (k)

p ‖jp′〉

× Ẽp3(NΛ, jpjp′)
∆EN3

, (A.26)

where

Ēp3(NΛ, jpjp′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jp jΛ J

′
jΛ jp

′ k

}

×〈jpjΛ|VNΛ|jp′jΛ〉J ′ , (A.27)

and

Ẽp3(NΛ, jpjp′) =
∑
J ′
(2J ′ + 1)

{
jp

′ jΛ J ′
J k jn

}

×〈jpjΛ|VNΛ|jp′jΛ〉J ′ . (A.28)
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7) Correction induced by ΨN4 (NN interaction).

δ̃p4(NN) = − 2
∆EN4

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp4〉J

×〈Ψp4|VNN|Ψ0〉J ,
= 2α2

∑
jπjπ

′
(−)J+k+jπ

′+jΛ(2J+1)
{
J J k
jn jn jΛ

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp4(NN, jπjπ ′)

∆EN4
, (A.29)

where

Ēp4(NN, jπjπ ′) =
∑
J0

(−)J0(2J0 + 1)
{
jπ

′ jn J0

jn jπ k

}

×〈jπ ′jn|VNN|jπjn〉J0,T=1 . (A.30)

8) Correction induced by ΨN4 (N∆ interaction).

δ̃p4(NΛ) = − 2
∆EN4

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp4〉J

×〈Ψp4|VNΛ|Ψ0〉J ,
= 2α2

∑
jπjπ

′
(−)J+k+jn+jπ

′
(2J+1)

{
J J k
jΛ jΛ jn

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp3(NΛ, jπjπ ′)

∆EN4
, (A.31)

where

Ēp4(NΛ, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jΛ J ′
jΛ jπ k

}

×〈jπ ′jΛ|VNΛ|jπjΛ〉J ′ . (A.32)

9) Correction induced by ΨN5 (NN interaction).

δ̃p5(NN) = − 2
∆EN5

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp5〉J

×〈Ψp5|VNN|Ψ0〉J ,
=

∑
jπjπ

′
(−)J+k+jπ

′+jΛ(2J + 1)
{
J J k
jn jn jΛ

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp5(NN, jπjπ ′)

∆EN5
, (A.33)

where

Ēp5(NN, jπjπ ′) =
∑
J0

(−)J0(2J0 + 1)
{
jπ

′ jn J0

jn jπ k

}

×〈jπ ′jn|VNN|jπjn〉J0,T0=0. (A.34)

10) Correction induced by ΨN5 (NΛ interaction).

δ̃p5(NΛ) = − 2
∆EN5

∑
jπjπ

′

∑
J0JN

〈Ψ0‖f (k)
p ‖Ψp5〉J

×〈Ψp5|VNΛ|Ψ0〉J ,
=

∑
jπjπ

′
(−)J+k+jn+jπ

′
(2J + 1)

{
J J k
jΛ jΛ jn

}

×〈jπ‖f (k)
p ‖jπ ′〉 Ēp5(NΛ, jπjπ ′)

∆EN5
, (A.35)

where

Ēp5(NΛ, jπjπ ′) =
∑
J ′
(−)J ′

(2J ′ + 1)
{
jπ

′ jΛ J ′
jΛ jπ k

}

×〈jπ ′jΛ|VNΛ|jπjΛ〉J ′ . (A.36)
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